Ячеистые бетоны с химическими и ре диспергирующими добавками

15.10.2008 15:11:27

Рассматривается технологияпроизводства ячеистого бетона с повышенной прочностью и трещиностойкостью.

Структура ячеистых или особолегкихбетонов характеризуется наличием в сплошной среде пор в виде распределенных повсему объему отдельных замкнутых (или условно замкнутых) ячеек. Мелкие исредние воздушные ячейки диаметром до 1–1,5 ммзанимают 85 % общего объема. Поэтому такие материалы мало проницаемы и болеепрочны.

Они могут быть автоклавного ибезавтоклавного твердения. Для автоклавных характерно химическое взаимодействиегидроксида кальция с кремнеземом заполнителя. И здесь желателен заполнительбогатый кварцем, особенно при получении бесцементного пено- или газосиликата.Используются в них мелкие природные или молотые пески, поскольку тяжелыекрупные зерна песка могут вызвать осадку пенобетонной массы и даже помешатьнормальному процессу ее вспучивания. Чем меньше заданная плотность ячеистогобетона, тем мельче должен быть заполнитель.

Однако в целом применение вопределенном количестве не слишком мелкого заполнителя улучшает структуруматериала между порами и уменьшает усадочные деформации в ячеистом бетоне.Поэтому в каждом случае требуется подбирать оптимальный зерновой состав песка.Природный песок, как правило, должен проходить полностью через сито сотверстиями 0,63 мм.

Объем производства ячеистогопенобетона в России уже не уступает газобетону и продолжает неуклонно расти. Становлениюпроизводства способствует относительная простота изготовления и наличие большогоколичества различных весьма эффективных пенообразователей. Благодаря последним производствопенобетона уже весьма популярно в странах общего рынка. А за счет исключения изтехнологии газообразователя — алюминиевой пудры — оно стало совершенно безопасным.

объемпроизводства ячеистого пенобетона в России уже не уступает газобетону ипродолжает неуклонно расти

Положительным качествомпенобетонной смеси является реологическая особенность, позволяющая осуществлятьтехнологию подачи или перекачивания по трубопроводам на довольно значительныерасстояния. При наличии мини-заводов строителями эффективно возводятся ограждающиемонолитные конструкции.

Однако, несмотря наположительные особенности, технология пенобетона по сравнению с газобетономимеет недостатки, которые следует учитывать при его изготовлении.

Так, из-за обязательногоиспользования значительного количества ПАВ пенобетону присущи: замедленный (на20–30 %) рост пластической прочности; невозможность эффективного ускоренногоподогрева сырца из-за разрушения пеномассы; просадка уровня (на 5–10 %)заливаемого при формовании изделия; образование на поверхности штучных илимассивных изделий легко отслаивающейся пленки, затрудняющей дальнейшую отделку.Кроме того, замедленное схватывания сырца приводит к послойному (по высотеизделия) разбросу плотности (от 100 до 200 кг/м3), что способствует развитиюдеструктивных процессов в массиве пенобетона.

Коалексценция пенообразователя, активнопроисходящая, как правило, при малой плотности пенобетона, образуетзначительное количество каверн. А разрушение пены в процессе технологическойпереработки (механическое или динамическое перемещение) пеномассы способствуетпреобразованию сферической формы ячеек в полиэдрическую (многогранную) споследующими после твердения локальными повышенными внутренними напряжениями.

К сожалению, эти явления редкопринимаются во внимание изготовителями, что приводит к выпуску некачественнойпродукции. Решить проблему можно исключительно повышением стойкости пен.

По существу, стабилизация пены,или усиление ее роли как «заполнителя» для бетона, является главнымтехнологическим требованием при оценке комплексного действия добавок напорообразующий аспект пенобетона, определяющий в целом его основные характеристики.

У зарубежных производителейвысокий показатель пеноустойчивости достигается созданием в оболочке пузырькапрочной минерализованной полимерной пленки.

Практика показывает, что, несмотряна простоту технологии, тщательность отбора твердых минеральных компонентов,качественное изготовление пенобетона возможны при выборе пенообразователей со свойствами,регламентированными ГОСТ 25485.

Например, применение ПАВжелательно сочетать с введением стабилизаторов, повышающих вязкостьпенорастворов и замедляющих тем самым удаление жидкости из пен. В некоторыхслучаях даже происходит физико-химическое связывание молекул стабилизатора ипенообразователя с получением весьма устойчивых соединений и пузырьков впенорастворе.

Вещественный состав самойдобавки (или «комплексность» набора компонентов в ней) следует соотносить стехнологией ее получения и видом или специальной классификацией по требованиям кней как к техническому продукту. Стабилизаторы делятся на органические и неорганические,растворимые и нерастворимые в воде.

По воздействию на механизмпенообразования стабилизаторы разделяют на классы:

— Вещества, направленноувеличивающие вязкость пенообразующего раствора или загустители, вводимые впенообразователи в значительных количествах (с расходом от 2 до 20 % от массы ПАВ),например, метилцеллюлоза, декстрин, этиленгликоль, казеин, глицерин и т. д.

— Соединения, вызывающие в пленкахпены образование коллоидов, резко уменьшающее обезвоживание пленок. Такиестабилизаторы более эффективны, но довольно дефицитны для использования в массовомпроизводстве. Это крахмал, костный или мездровый клей, желатин и др. Расход 0,1–0,3 % от массы ПАВ. Резко (в 150 и более раз) увеличиваютвязкость жидкости в пленках, что приводит к возрастанию устойчивости пены в 5–10раз.

— Вещества, обеспечивающие полимеризациюпеномассы и также резко увеличивающие вязкость пленок, переводя последние дажев твердое состояние. К ним относятся водорастворимые полимерные композиции —карбамидные, латексные и др.

— Эффективны как стабилизаторы,нерастворимые в воде, соли меди, бария, железа, алюминия, капсулирующие пленкипены и тем самым препятствующие их разрушению. К такому типу стабилизаторовследует отнести пену с тонкоизмельченными твердыми веществами (способминерализации), которые адгезионно прикрепляясь к пенным оболочкам и постепенносближаясь, создают комплекс пенно-воздушных минерализованных ячеек, образуяагрегатную пену. Такой способ стабилизации и позволил создать новый одностадийныйспособ получения пенобетона — сухой минерализацией пены [2, 5].

Другим способом улучшениясвойств пенобетона при раздельной технологии приготовления может бытьприменение комплексных добавок, вводимых с водой затворения, например,суперпластификатор С-3 + ТНФ, или другой щелочесодержащий компонент.

Комплексные синтетическиепенообразователи на основе отечественных ПАВ со стабилизаторами указанныхклассов позволяют получить качественный пенобетон, обладающий к тому же невысокойстоимостью [3].

Таким образом, пенобетоны —растворные смеси с большим расходом вяжущего, воды и с добавкой кремнеземистогокомпонента — могут быть получены и без применения традиционных пластификаторов,но только с оптимально подобранным стабилизированным комплексным пенообразователем.

Следует отметить, что минеральныйсостав компонентов должен соответствовать требованиям ГОСТ 25485, а технология изготовления— соответствующим нормативным документам, в частности, СН 277-80. Все это позволитсвести недостатки пенобетона, о которых говорилось выше, к минимуму.

Пенобетон, не уступающий покачеству газобетону, можно получать на любых типах вяжущего (шлакощелочный,щелочноалюмосиликатный, солещелочный, кремнезольный) с использованием природныхрастительных и белковых пенообразователей, имеющих коллоидную структуру, где вяжущаясистема и является необходимой основой, исключающей недостатки пенобетона [4].

Согласно современным данным [3],наиболее целесообразно использовать для пенобетонов широкого спектра примененияследующие виды пенообразователей и стабилизаторов: ТНФ (тринатрийфосфат; ГОСТ201), КМЦ, (МЦ) (карбоксиметилцеллюлоза; ТУ 6-01-1857), Сульфанол (ТУ 6-01-1001-77)(табл. 1).

Наименование

Характеристики (внешний вид)

Стабилизатор

Расход сухих компонентов на 1 л воды, г

ОП-1 (ГОСТ 8473)

Пастообразный продукт, получаемый обработкой моно- и диалкилфенолов оксидом этилена

Мездровый или костный клей

130+350

Паста алкилсульфатов (ПО-6НП; ПО-6НП-М) (ТУ 38-00-05807999-33; ТУ 2481-015-05807999)

Пастообразный продукт или жидкость, ?=1,01–1,1 кг/л

Жидкое стекло + ТНФ

100+120+5

СВМ «Астра» + ТНФ + КМЦ

Синтетическое моющее вещество. Белый или светло-желтый порошок, хорошо растворимый в воде

ТНФ + КМЦ

60+40+160

СВМ «Вита» + КМЦ

То же

КМЦ

140+200

СВМ «Альфин» + КМЦ

То же

КМЦ

160+200

СВМ «Прогресс» + ТНФ + КМЦ

То же

ТНФ + КМЦ

160+10+5

Сульфанол

Исходный продукт для получения порошка СВМ белого или желтого цвета, растворим в воде

Мездровый клей или КМЦ

609+80

Сульфанол + ТНФ + жидкое стекло

То же

ТНФ + жидкое стекло

80+80+160

Сульфанол + ТНФ + КМЦ

То же

ТНФ + КМЦ

80+80+160

Таблица 1. Комплексные добавки для пенобетона

Преимуществом указанных комплексныхдобавок является благоприятное воздействие на реологию пеномассы, доступность компонентов,низкая стоимость и простота применения независимо от технологии изготовлениябетонной смеси.

В связи с тем, что производителиглавным образом ориентированы на производство цементных ячеистых бетонов,следует иметь в виду, что цементный камень при твердении претерпевает объемныедеформации и его усадка достигает 2 мм/м.

Из-за неравномерности усадочныхдеформаций возникают внутренние напряжения и трещины. Мелкие трещины могут бытьнезаметны невооруженным глазом, но они резко снижают прочность и долговечностьцементного камня. Заполнитель создает в бетоне жесткий скелет, воспринимает усадочные напряжения иуменьшает усадку обычного бетона примерно в 10 раз по сравнению с усадкойцементного камня.

Для понижения трещинообразования,повышения прочности при изгибе и растяжении, увеличения морозостойкости ячеистогобетона предложена универсальная технология армирования его минеральнымиволокнами (стекловолокном). Технология армирования проста и может бытьиспользована на практике при изготовлении изделий и конструкций из ячеистогобетона.

для понижения трещинообразования, повышения прочности приизгибе и растяжении, увеличения морозостойкости ячеистого бетона предложенауниверсальная технология армирования его минеральными волокнами(стекловолокном)

Доля материальных затрат вваловой продукции строительного производства составляет около 50 %, и крайневажной задачей является их снижение за счет использования вторичных продуктовпромышленности при изготовлении неавтоклавных ячеистых бетонов. А поскольку втехнологии ячеистого бетона б?льшую часть сырьевой смеси, как правило, составляеткремнеземистый компонент, появляется необходимость использовать дисперсныекварцсодержащие вторичные промпродукты. Применение таких материалов позволяетрезко снизить энергозатраты на помол кремнеземистого компонента и исключить изпотребления специальные природные кремнеземистые компоненты. В частности,зольная часть сырьевой композиции представляет собой сухую золу-унос различныхмодификаций.

Для изготовления изделий избезавтоклавных ячеистых бетонов в настоящее время применяются золы и шлаки,использование которых предопределяет производство материалов с пониженными посравнению с автоклавными ячеистыми бетонами на аналогичной основе прочностнымипоказателями. Большое значение для повышения транспортабельности трещиностойкостиготовых изделий имеет прочность безавтоклавного ячеистого бетона на растяжение.

Увеличение ее длябезавтоклавного газошлакозолосиликата, наряду с другими методами, может бытьдостигнуто путем фиброармирования матрицы материала добавкой минеральной ваты,в частности, стекловаты. Как показывает зарубежный опыт коррозионное действиещелочной среды композиций с добавкой доменного шлака и зол, в которыхпреобладают соединения Al2O3 и SiO2, настекловолокно меньше, чем традиционных, в которых преобладают кальциевыесоединения.

При исследованиях применялисьразличные сочетания как кислых, так и основных зол шлаков, затворенныхщелочными компонентами первой группы по классификации В. Д. Глуховского. Дляснижения усадочных деформаций в сырьевую смесь вводили некоторое количествонегашеной извести и гипса в количестве до 5 % от массы сухих компонентов смеси.Испытания проводились на газобетоне с расчетной плотностью до 700 кг/м3.

Оптимальный состав по прочностина сжатие подбирали на смесях, состоящих из шлакощелочного вяжущего и золы.Отношение добавки извести к шлаку менялось в определенных параметрах — не менее10 % к массе сухих компонентов. При постоянном соотношении количества извести кшлаку в составы вводилось переменное количество золы-уноса и добавка гипса — 5 %от массы сухих компонентов сырьевой смеси.

Наибольшую прочность имелиобразцы, изготовленные на составах с соотношением шлакощелочного вяжущего кзоле 1:0,6. После изготовления изделия пропаривались при температуре 90–95 °Cпо режимам, рекомендованным нормативными документами дляконструктивно-теплоизоляционного ячеистого бетона.

Так как с увеличением содержанияизвести-кипелки и золы растут водопоглощение и усадка готового бетона, всепоследующие работы проводились на составе с 30%-ным содержанием золы припостоянном соотношении шлака к щелочно-щелочноземельным активизаторам.Дисперсность сырьевой смеси находилась в пределах 3000–4000см2/г.

С целью повышения прочности прирастяжении в состав сырьевой смеси вводилась стекловата. Введение осуществлялосьследующим образом. В работающий смеситель заливали воду, загружали стекловату иперемешивали смесь в течение определенного времени. Затем в смеситель загружалисухие компоненты и перемешивали еще не менее 1–2мин. После введения требуемого количества водно-алюминиевой суспензииперемешивание продолжалось до равномерного распределения газообразователя всырьевой массе.

Исследования влияния добавокстекловаты на прочностные характеристики газобетона проводили на оптимальном попрочностным показателям составе плотностью 700 кг/м3.

Увеличение массы добавкипрактически не влияло на прочностные характеристики ячеистого бетона.

Были проведены такжеисследования влияния длины волокон стекловаты на прочностные показателигазобетона оптимального состава. Установлено, что изменение длины волокон от 10до 40 ммпрактически не влияет на физико-механические характеристики бетона. Былаотмечена тенденция к повышению устойчивости газобетонной массы и улучшению еереологических характеристик. Поверхность волокн? видимо образовывала подложки,способствующие росту микрокристаллов, формированию коагуляционных, а затем икристаллизационных структур. В начальный период твердения, все это улучшалореологические свойства ячеистобетонной смеси, что подтверждалось при всех прочихравных условиях формовки контрольных образцов и снижением ее плотности присохранении прочностных показателей.

При введении в состав сырьевойсмеси добавки стекловолокн? оптимальной длины от 15 до 40 мм было отмечено улучшениеструктуры бетона. Применение волокон длиной более 40 мм не позволялокачественно перемешать смесь из-за образования несмешиваемых с остальной массойучастков, состоящих из спутанных волоконных прядей («ежей»), что не позволялополучать качественный газобетонный сырец и бетон на его основе.

Без добавки волокн? плотность у ячеистогобетона составляла 730 кг/м3 при прочности на сжатие 3,7 МПа и прочностина изгиб 1,1 МПа. Введение волокн? оптимальной длины в количестве 5% от массысырьевых компонентов при длине волокн? до 15 мм позволяло получать бетон плотностью 670кг/м3 при прочности на сжатие 4,1 МПа и прочности на изгиб 2,3 МПа. Придлине волокн? от 30 до 40 ммплотность составляла в среднем 625 кг/м3 при прочности 4,8 МПа и прочностина изгиб 3,1 МПа. Следует отметить четкую тенденцию к снижению плотности содновременным повышением прочностных показателей газобетона. Морозостойкостьмодифицированного газобетона достигала 150 циклов замораживания и оттаиваниябез видимых признаков разрушения и снижения прочности по сравнению с традиционным(Кмрз=75; Rсж=2,8МПа).

при введении в состав сырьевой смеси добавкистекловолокн? оптимальной длины от 15 до 40 мм было отмечено улучшение структуры бетона

Рис. 1. Увеличение ?150

Рис. 2. Увеличение ?600

Рис. 3. Увеличение ?1500

На рис. 1–3 представленымикрофотографии структуры дисперсноармированного газобетона. На рис. 1 четко видна армированнаянекоррозированными волокнами межпоровая перегородка, а также ячейки макропор.

При большем увеличении (рис. 2) в отмеченной точке видно, как вол?кна,замоноличенные в основной связующий материал, сшивают матрицу газобетона, подобноарматуре. При еще большем увеличении (рис.3) показано, что вол?кна уже склеены продуктами новообразований и не имеюткоррозионных повреждений. Исследования проведены на образцах (блоках) стеновойкладки, изготовленных из блоков в производственных условиях с дисперснымармированием стекловатой, после эксплуатации в течение 5 лет в суровых климатическихусловиях Урала.

Получение нового материала сувеличенной прочностью на растяжение позволяет повысить прочность итрещиностойкость ячеистого бетона на бесцементном вяжущем. При этом за счетисключения расхода клинкерных вяжущих и автоклавной обработки изделий, а также благодаряутилизации зол и шлаков значительно сокращается энергоемкость производства.

Литература:

1. Багров Б. О. Производствотеплоизоляционного материала из отходов цветной металлургии. — М.: Металлургия,1985.

2. Горлов Ю. П., Меркин А. П.,Устенко А. А. Технология теплоизоляционных материалов. — М.: Стройиздат, 1980.

3. Касторных Л. И. Добавки вбетоны и строительные растворы. — Ростов-на-Дону: Феникс, 2005.

4. Скороходова Н. Ю. Рынок ячеистыхбетонов // Стройпрофиль. — 2006. — № 5.

5. Тихомиров В. К. Пены. Теория ипрактика их получения и разрушения. — М.: Химия, 1983.

6. Усов Б. А. Химизация бетона:Учебное пособие.— М.: МГОУ, 2007.


    Была ли полезна информация?
  • 5534
Автор: @